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ABSTRACT

Miller, N.L.. 1992. Stability analysis of toxic substances within aquatic ecosystems and their
effect on aquatic populations. Ecol. Modelling, 60: 151-165.

A stability analysis is presented for toxic substances introduced to aquatic ecosystems
and their intercompartmental relationships to aquatic populations. A specific toxin, vinyl
chloride, was used in this study because an aquatic ecosystem model that includes vinyl
chloride is available, The system and compartmental stability are dependent on the
magnitudes and rates of transfer of vinyl chloride into, out of, and within each compart-
ment. An 11 compartment model is presented and set up for the system eigenvalues.
Compartments whose eigenvalues equal zero are the least stable because they accumulate
vinyl chloride. Intercompartmental transports of vinyl chloride into and out of the filter-
feeding fish compartment is incorporated into a logistic population model. This model is
analyzed for growth stability as a function of vinyl chloride in the aquatic system. It is found
that the population collapses when the vinyl chloride decay rate terms are greater than the
growth rate term. These technigues apply to the analysis of any aquatic population where a
toxic substance is present.

INTRODUCTION

Anthropogenically produced toxic substances that enter the aquatic food
chain represent a serious health threat to humans and to the inhabitants of
such polluted ecosystems. Fhe ability of an aquatic ecosystem to restore
itself to the pre-pollution state is directly related to the compartmental
retention times and exchange rates among compartments and the transport
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rates out of the system. The effect of a toxic substance can be best
understood by measuring its presence throughout an aquatic system and by
determining the rates of its transport between and storage within compart-
ments (Hutchinson, 1957; Tsivoglou, 1967; Russell-Hunter, 1970). An un-
derstanding of the compartmental and total system stability of a toxic
substance can be achieved with the use of conceptual models.

This study addrésses stability and compartmental responses for the
weli-studied toxic pollutant vinyl chloride. The techniques used are applica-
ble to virtually any toxic substance and aquatic ecosystem, if the system,
compartmental rates, and the toxic properties are defined. This study will
show compartmental and system stability and also the effect of vinyl
chloride (VC) on a filter-feeding fish population as a function of VC
concentrations within the interdependent compartments,

VINYL CHLORIDE IN AQUATIC ECOSYSTEMS

Vinyl chloride is a colorless, highly flammable gas that is used in the
_production of polyvinyl chloride, a component of some synthetics rubbers
and plastics. Production of these synthetics results in the input of VC into
aquatic systems as part of industrial liquid waste (Hill et al., 1976).

Gillett et al. (1974) presented an initial model of VCs in an aquatic
~ environment that includes VC in the water column, particulates, sediments,
and the atmosphere. They also incorporated direct and indirect photo-
chemical reactions; hydrolytic, free radical, and elimination reactions;
microbial degradation; and VC in the food web. This compartmental
framework is the foundation for the VC model studies of Hill et al. (1976).
In these studies, compartmental pathways are constructed, and ‘BEST’ and
‘WORST" case estimates are provided. The ‘BEST’ estimate approxima-
tion as defined by Hill et al. (1976) uses the most reasonable estimates of
the rates for all processes as determined from laboratory results. These
results indicate that all processes except volatilization are near zero. A
revised version of this model is used in this study; here a nonzero atmo-
spheric output other than the water compartment has been included (Fig.
1). In the “WORST’ case estimate, all chemical and biological transforma-
tion processes are assumed to be at rates below the level of measurement
in the experimental procedure used in their determination. The revised
version used in this study again includes a nonzero atmospheric output
(Fig. 2).

STABILITY ANALYSIS

In this study, stability analysis began with a ‘BEST’ estimate model and
then uses a “WORST’ estimate model of VC in the aquatic environment
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Fig. 1. ‘BEST" estimate model. X, atmosphere compartment; X, water compartment; /5,
VC input to X,; O, VC output from X; O,, VC output from X,.

(Hill et al., 1976). Figure 1 illustrates the simple, two-compartment model
(water and atmosphere). The input (/,) and the outputs (O, O,) are
described here as constants operating in the atmospheric (1) and water (2)
compartments. The net transport of VC between the water and atmosphere
(a,,) is one-directional because of the volatility of VC (Gillett et al., 1974).
Atmospherlc deposition processes are neglected. This two-comparlment
system is represented mathematically as follows:

dX,/dt =1, — (0, +a,,)X, (1b)
X4
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Fig. 2. ‘WORST estimate model. X,, VC in atmosphere; X,, VC in water; X;. VC in
chemical and biological reaction products in water; [, VC input to X; 0,, VC output from
X33 Oy, VC output from X; O;, VC output from X
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The solution of these equations is:

XI(X):Xi*—i_(Xl(O)_-XI*) exp(—0,) (2a)
X,y(1) = X5 + (X,(0) - X7') exp[ — (0, + ‘-’31.2)4 (2b)
where X =1,/(0,+a,,) and X¥ =Xa,,/0,. Here X" and X" rep-
resent the steady-state equilibrium values for compartments (1) and (2). An
equilibrium-centered perturbation analysis will remove the assumed con-
stant vaiues I, from equation (1b). Let X, =X* +x; where x,/X* <1
for i=1, 2, and X;* arc the constant equilibrium values. Now d X;/d¢ =
dx,/dt, and:

dx,/dt =a,,x, — Ox, (3a)
The community matrix for this system is defined as:
. | =0 42 —Ay @2
A= : ; = ) 4
i =dowes)] & =% (4)

where the system eigenvalues are defined as A, = Oy, and A, =(0; +a,,).
The solution to dx;/d¢ = Ax, has the general form x,(¢t) = C; exp(—C 1),
where C, and C, are constants. This solution implies that all of the
perturbations within this system have the same time dependence. In matrix
form this is expressed as Ax =Ax or (4 —AI) =0, where I is the identity
matrix. The trivial solution is x = 0, but the nontrivial solution occurs when
the determinant is equal to zero:

"{)"*'"‘1) @y

A-All =
| | 0 —{A+A,)

={A+A)(A+A1,)=0 (5)
This is the secular equation; it gives the eigenvalues of this system. The
equilibrium points are at A =A,, A,, which both are real and positive.
Substituting the eigenvalues back into equations (2a, b) indicates that X,
has a stable component with respect to VC perturbations. A VC perturba-
tion in X, is illustrated in Fig. 3 as an abrupt increase in the VC
concentration in X,, which exponentially decays back to an equilibrium
value. The rate in which a perturbed compartment returns to a stable
equilibrium depends on the compartment size and the magnitudes of VC
transport into and out of the perturbed compartment. If X, > X, then a
neutral situation results. In this case the transport of VC from the water
compartment into the atmosphere is very small compared to the atmo-
sphere compartment. However, if conditions represented, a mountainous
valley where an atmospheric inversion is often present (O, is very small),
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[ig. 3. Water compartment is perturbed by &¢ input of ¥C. Over time this disturbance
reaches and equilibrium.

then significant effects to X, would be likely. This last case would imply
global stability with a tendency toward local instability in some external
conditions.

The ‘WORST’ estimate case is defined here as a three-compartment
system where chemical and biological reaction products in water are the
third compartment (Fig. 2). This model and the ‘BEST estimate’ model will
give the extreme ranges of possible outcomes. The three-component system
is represented mathematically as follows:

dX1/d{=ﬂ1,2X2_01X1 (6a)
dX,/dt =a;, X, — 0, X, (6¢c)

where A, =0, A,=0+a,,+a;,, A;=0;. The solutions to equations
(6a, b, ¢) are:

X!{r}le*_]-[xl(o}“Xl*] exp(—A,t) (7a)
X,(1) = X5 + [ X,(0) — X" ] exp(—A,t) (7b)
X5(t) = X5 + [ X3(0) — X3*| exp(—As¢) (7c)

where X =1,/A,, X\*=XFa,,/A, and X3 =X "a,,/A,.
Equilibrium-centered perturbation analysis has a form similar to equa-
tions (3a, b):

dx,/dt=a, ,x; — A, x, | (8a)
dx,/dt=—A,x, {3b)

dx;/dt =a5,x, = A3x3 (8c)
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with a community matrix defined as

— Ay a 0
A=| 0 =i, 0 (9)
0 @37 —Ay
=—(A+A)A+A)A+23)=0 (10)

where A, A,, and A, are positive and real. Substituting the eigenvalues
back into equations (7a, b, ¢) again indicates that there is stability at
A= —A;, —Ay,and —Aj

The sensitivities of each compartment equilibrium value to changes in
the input, output, and transfer rates are critical in evaluating a system
response. In this system, X*=2,X /A, X)=5L/A;, and XJ=
a4, X" /A5 These values are subject to a sensirivity analysis in O,, I,, O,,
0s, a,,, and a5,. Each equilibrium value x¥ is expressed here as a linear
function of input, outputs, and transfer rates which are given as perturba-
tions about a mean constant value. That is, O, = O] (1 + P, ), 03 =03(1 +
P.), L =1l(1 +P ) ap=al{1+F, ), and dy; =83, (1+P ). Here
oy, 1), 02, 03, a?,, and a}, are mean '"Constant values, while Fo Po 5 P
P P, ,and P, , are fractional changes. Linear appro:umatlons for eacil

ﬂlz}

cquﬂtbrlum valué is expressed as:
X0, 04, 1, a, 4, a;,)

=X 0,) +X50,) + X ¥ (L) + X[ (a,,) +X*(as,) (L1a)
XF(0,, Iy, ay,, a35) =X7F(0,) + XF (1) + X (a, ;) + X (a;,) (11b)
X305, L, Oy, ay 5, a55)

=X0y) + XML+ XH0,) + XHa5) + X (ay,) (11c)

The sensitivity analysis to X* (O)) is given below. Sensitivities to all of the
remaining terms in equatjons (11 a, b, c) are given in Table 1.

[X*(0,) — X} (O] /X ¥ (e
(a] 2;0}/[01(00 +af, +af 2)] (a1219)/[03(03 + a2, +af,)]
(a2,19)/[0%(04 + a, , +a3,)]|
=(0} - 0,)/0,= =P /(1 +P,) (12)
and

X¥O,) = X;*(U?)[l B, J{P5® 1}] =X (ON)[1+ S, (13)
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TABLE 1
Sensitivity analysis of terms in equations (11a, b, ¢) *
0 X0 XM XX
So, = Fo, /(P +1) = &
So, = P M, +1+Cp) =P, APo +1+Cp) =P, /(Py, +1+Cp )}
55 - - =P SR, ot 1
1 £, Py, I
b P"‘I '(a?'z x Og} = P"l 2 = Plﬂ'l ]
al.2 et e = e e T
Pa:.: -"-[TC“:; Pm+i+C,,I2 Pd|1+ +C
3 _P"L? ) _Pﬂu 91;(a|2+0 ]
= P 1+ Gy, P T11C, i & £ o
* Cp,=(ay, "'“32)/0” Co, =(a}, +aj,)

(af
Copy= (08 5al,)/al,  Cop, =09 +als)/al,

The general form for the sensitivity of the system of equations is::
Xr=xx0))(1+ So) + xX*o9Na+ So,) + X*(I1H(1+S,)
+X*(af,)(1+s,, ) + X*(a32)(L+S,,,) (14)

Positive changes in [, linearly increase each compartment as expected.
Increases in output O, indicate equal but small decreases for each com-
partment that depend on the magnitude of C,. The most sensitive
parameters are a,, and a;, depending on which compartment is being
evaluated. The sensitivity of a, , is similar to that of O, for X;* and X7,
but now there is a dependence on the magnitude of C, . Similarly for a5 ,,
X* and X;* show the same dependence as C, . However, X" is very
sensitive to changes in a,,, as X" is to a,, as 1s illustrated in Table 1.
Variations in @, and O, affect only their respective compartmental equi-
libriums, X * and X¥. System perturbations and compartmental responses
will behave according to the above linear sensitivity analysis. The most
important aspects of this type of study are the magnitudes of each parame-
ter and their interdependencies. Each parameter determines the values of
the equilibrium concentrations in proportion to these resuits.

The ‘BEST’ estimate and ‘“WQORST’ estimate models indicate only
trends in system stability as a function of the VC magnitudes and rates and
of the compartments’ abilities to reach equilibrium. Clearly a full-system
model is necessary to understand the local stability of each compartment
and the global stability of the entire system. Hill et al. (1976) provided a
system diagram for their model of VC in an aquatic system (Fig. 4). This
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Fig. 4. System model of VC in a stratified lake with a siraple, idealized flood web.

TABLE 2

Set of equations describing the 11-compartment aquatic ecosystems

Compartment Linear equation Eigenvalue ()
1 aX,/dt = a2 %, A, =0
2 dX; /dt =a,, X, — 1, X, Ay=@13=a3; ta,ztag,
3 dX; /dt = a3, X, As=0
4 dX,/dr=a,,X; +a,5X;— A X, Ag=lyatasgtdaggtay,
5 dX;/dt =as X, +aseXe+as.X, As=ays+ags
+tasgXgtasg Xy
+ 8510 X190 — A5 s
6 dXg/dt =ag, X; — agX; Ag=dgg+dgstaig
7 dX;/de =a,, X, —a;X; Ay=dgst a9yt a7
8 dXg /dt = a5 X — ag Xy Ag=asgtag,;
B dX, /dt = ag o X+ dg X Ag=dse+ s
+aggXg— A Xy
10 dX o /dt = a156 X5 + a3, X5 Ay =450
+ a9 Xs — A1 Xy
11 dX“/d:=a“_4X‘ /\1130
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simple model represents VC in an idealized food web and omits several
feedbacks (atmospheric deposition, resuspension, plankton, fecal, etc.). As
in equations (1a, b) and (6a, b, ¢), a set of linear equations and eigenvalues
is defined in Table 2.

More detailed systems of equations can be built up with the present
technique and handled in the same fashion as above. Equations in Table 2
whose eigenvalues are equal to zero designate VC sinks. It is assumed (Fig.
4) that this is a closed lake system, that there are no significant outlets for
Q,, O,, and Q4. The community matrix for this system is defined as:

A= 0 a, 0 0 0 0 0 0 0 0 0
0 -a, 0 ay, 0 Q 0 0 0 0 0
0 a;, O 0 0 0 0 0 0 0 0
0 a,;, 0 -—-Ay aus Q 0 0 0 0 0
0 0 0 a5 =—As a5 a5y asy asy as;, 0
0 a, 0 0 0 =-i O 0 0 0 o0 (15)
0 0 0 aqy 0 Q -4, 0 0 0 0
0 0 0 0 ags 0 0 —Ag 0 0 0
o o 0 0 0 Qg Qg7 @gg —Ay 0 0
0 0 0 0 0 Qs Q7 Gpg Sy A 0
0 0 0 a,, 0 0 Q 0 0 n. 0

where Ay =A;=A4,,=0, A,=A4,,, A; =A,, and A; = Az The secular equa-
tion produces an 11th-degree equation in A whose solution determines the
cigenvalues for this system of equations. The eigenvalues correspond to
those given in Table 2. Compartmental magnitudes and rates determine
local stability. This system exhibits local and global stability. The ratio
X,/X, and the ratio a,,/a,, indicate the sizes of stratified layers and the
mixing between the layers. An unstable case would occur when X,(t)/
X,(t) > 1. This is the situation where X,(t) is very small compared to
Xt) and has an input from X,(t) (a,,) that is much greater than the
output from X,(r) (1, X,(¢)). Other compartments and transfers are sub-
ject to similar instabilities; such situations can force the entire system to
become unstable. VC could accumulate at a devastating rate because of
small or zero eigenvalues (e.g., in fatty tissue of fish). The effect that a toxic
substance has one a biological compartment within an aquatic ecosystem is
detailed in the following section, which uses the model in Fig. 4 (Hill et al.,
1976).

FISH POPULATION AS A FUNCTION OF VINYL CHLORIDE

The pathways of a toxic substance within an aquatic ecosystem depend
on the rates and residences between and among compartments. Under-
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standing the effect of this intercompartmental exchange of VC on the
growth rate of filterfeeding fish will highlight the usefulness of this ap-
proach. This analysis will indicate the overall quantitative effect of VC has
on the growth rate of filter-feeding fish and the compartments from which
this toxin is most significant. Figure 4 indicates that the VC concentration
in the bottom layer filter-feeding fish has one input, VC transported from
the water compartment, a,,X,(¢), and three outputs, to sediments (aj ),
predator organisms (dg,), and omnivorous organisms (ay,. This model
can easily be expanded to include other compartments as they become
important. The particular and homogeneous solution for compartment 7 in
Table 2 has the form:

X (t)=X,(0) e ™ + X} + X2 (16)

The population growth rate for compartment 7, r{ X;, t), and the carrying
capacity, k(X,, t), can be approximated as linear functions with first-order
dependence on X5(¢) as follows:

r(xy,)=r(0) —y Xy(¢) (17a)
K(X,) =K(0) v Xy(1) (17b)

Here r(0) and k(0) are the initial growth rate and the carrying capacity,
and y and v are constants. Applying a logistic population model (Volterra,
1926) gives the following:

el X N 1 N 18
— = o t - —
df ."I: ) } ( ) K(Xj,f) ( )
where N(¢) is the time-dependent population of filter-feeding fish. For
simplicity, it is assumed here that toxin effects all age classes similarly.
Defining n(t) = N(t) /K(X,, t) and substituting equation (17a) for r(X,, ¢)
results in the following integral:

oy d ‘
L{;,)Ff;}) = fo{r(o) = )"[X?(G) e~ -i-XT* —f—Xf]} dt (19)

whose solution is

7(t) =n(0){[1 = n(0)] exp[—r(0) r +J(1 —e™*") + Ht| + ﬂ(u}.}F1 (20)

where the constants J=1vy X,(0)/A; and H =A(X; +X;*). The presence
of VC in this aquatic ecosystem quantitatively affects the filter-feeding fish
population as terms J and H in equation (20). Evaluation of J(1 —e™*"")
and Ht reveals that if H > r(0), then 7(¢) approaches zero as t goes to
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infinity. If H < r(0), then n(¢) approaches unity as ¢ goes to infinity. That
is, n(t) approaches its carrying capacity over time only if the initial growth
rate is greater than the rate effect termm H. The effect of VC removal rates
from compartment 7 is seen in term J(1 — e ~*7). The initial removal value
of zero is not felt until time periods on the order of 1/A, have passed. This
initial removal value is again hinged to each rate term in X, which has a
stabilizing effect similar to the earlier discussions for the ‘BEST  and
‘WORST’ estimate models. After a time interval ¢ > 1/A,, J(1 —e ™)
approaches y X,(0)/A,, the steady state.

Further evaluation of the effects of VC on the growth and stability
within a time-dependent population is made possible by rewriting equation
(20) as:

n(t) = (21)

1+ We™St

where now S(¢) = r(0) ¢t —J(1 —e~*"') — Ht and W= (1 — n(0)) /%(0). Pop-
ulation stability is analyzed by letting n(t) =n* + X(¢), where n* is the
equilibrium population and X(r) is the time-dependent population pertur-
bation. Figure 5 shows that the filter-feeding fish population will equalize
at n(t)=1 (the carrying capacity) for §>0 and at n(¢)=0 for §<0.
Graphically this is a double sigmoid growth and decay curve with symmetry
about 7%(0). Here (S < 0) and »($ > 0) are the growth rate extremes; they
are illustrated in Fig. 5 as curves a and e respectively. Section I in Fig. 5 is
the region where r(0) t > J(1 — e~**) + Ht; it represents population growth.
The exponent in equation (21) decays with time, and a normalized equilib-
rium value (carrying capacity) is approached. Curve b lies in section I, and
its sigmoidal growth in dependent on the magnitude of r(0) —J(1 —e™**)
+ Ht. The population growth approaches zero as this value approaches
zero. This resultant zero slope at 7(¢) = 5(0) is a steady-state situation that
is represented by curve ¢ in Fig. 5. Curve d is the case where r{0)
t <J(1 —e ™)+ H,. Here the exponent grows positively with time and
decreases the value of #(¢) until a zero population is reached (until local
extinction occurs), The values of the curve depend on the magnitude of §.
If 1(0) is greater than unity (the carrying capacity), the model breaks down.
Figure 6 shows the case where n(0) > 1 and § > 0, the term W is negative,
and inconsistencies arise. In this situation n(¢) asymptotically approaches
infinity at WeS =1. That is, as ¢ approaches In(W)/S, n(t) goes to
infinity; n(t) returns from negative infinity as ¢ > In{(W) /S. This discontinu-
ity occurs in the region that exceeds the limits of the model. The model is
thus invalid and useless for 7(0) > 1 or N(0) > K.
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Fig. 5. Normalized filter-feeding fish growth rate as a function of VC.

Taking the derivative of equation (18) with respect to 7 illustrates the
greatest and least rates of change in population:

d?n

dr dy

= $(1-2n) (22)

Figure 7 is a plot of dn /d¢ and # as a function of §. The maximum (and
constant) growth is at an equilibrium value n = 1 /2. The constant decay is
at 29(0) — 1/2. For values of $ <0, dn/dt goes to zero at 7 =1. For
values -of § <0, dn/d¢ is always negative and will reach a maximum
population at %(0). The constant decay at 27(0) —1/2 is seen as an
inflection point in Fig. 5. Values of § > 0 indicate that dn /d¢ goes to zero
as n(t) = 0. This prediction is in agreement with reality; as the population

n{0)

n(t) 1

t

Fig. 6. Growth rate for the case where n(0) > 1. Model breaks down and this particular case
is invalid.
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Fig. 7. Population change plotted with population as a function of §.

becomes extinct, the growth rate (decay rate) is no longer nonzero. The
decay behaves as a function of J(1—e *)}+ Ht—r(0) ¢. This is an
exponential linear function, and it does not reach values greater than the
initial value.

SUMMARY AND CONCLUSION

This stability analysis of toxic substances within aquatic ecosystems gave
new information on compartmental and intercompartmental responses.
The analysis showed that when volitization is the significant process for
toxic substance transport, the ‘BEST’ estimate, then the atmosphere will
act as an infinite sink and there will always be stability. The length of time
required for this system to return to the pre-pollution equilibrium state
depends directly on the net volatilization rate. The case where chemical
and biological rates are minimized, the ‘WORST’ estimate, is also stable
and will return to its pre-pollution equilibrium state at a faster rate that the
‘BEST’ estimate case. This faster response is due to the inclusion of
chemical and biological reactions. It was shown that the most sensitive
parameters are the transfer rates between compartments. Oscillating inputs
with low frequencies result in larger concentrations than high-frequency
inputs throughout the entire system. A detailed system analysis for VC
within the eleven-compartment model also indicates stability. This stability
15 initially determined at the compartment level. Some systems are less
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stable than those studied here. The concentrations of toxic substances,
rates, magnitudes, and retention times all vary from system to system.

The effect of a toxic substance that enters an aguatic system at some
frequency and the resultant concentration of each compartment due to the
transfer rates has been parameterized for a filter-feeding fish compart-
ment. The population growth rate of filter-feeding fish is expressed as a
function of the toxic substance (VC). The growth rate is quantified as a
function of the transport of VC into and out of the filter-feeding fish
compariment. It was shown that a range of growth rates exists and that
these rates are dependent on the sign and magnitude of the term §. Effects
of other variables or functions can be described within the framework of
the present theory. This population analysis was set up for the general case
and is applicable to any species’ growth rate that is dependent on a known
(or unknown) function (S).

The implications of these results are far reaching. Aquatic ecosystems
management can now quantify intercompartmental affects due to toxic
substances for most any aquatic system. An understanding of compartmen-
tal stability and response will determine population trends. These tools will
‘allow for predictive decision making.

This new approach to quantifying toxic pathways and their effects on
aquatic populations gives new insight into the determination of significant
transfer rates, sensitivities, compartmental interrelationships, and a host of
other properties,
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